New Calabi-Yau manifolds with small Hodge numbers

Philip Candelas¹, Rhys Davies²

 $^1{\rm Mathematical}$ Institute, University of Oxford $^2{\rm Rudolf}$ Peierls Centre for Theoretical Physics, University of Oxford

13th October 2008, University of Oxford

Outline

1 Overview

- Motivation
- The Plan of Attack
- 2 Technical Background
 - CICY's
 - Quotients of CICY's
 - Conifold transitions

3 Results

- \mathbb{Z}_5 quotients
- \mathbb{Z}_3 quotients
- ${\scriptstyle \bullet}$ Quotients by ${\mathbb H}$
- Notable points

Motivation The Plan of Attack

Calabi-Yau manifolds

- For this talk, a Calabi-Yau manifold is a compact Kähler 3-fold with trivial first Chern class.
- This is enough to determine all except two Hodge numbers. The Hodge diamond is

$$\begin{array}{cccccccc} h^{00} & 1 \\ h^{10} & h^{01} & 0 & 0 \\ h^{20} & h^{11} & h^{02} & 0 & h^{11} & 0 \\ h^{30} & h^{21} & h^{12} & h^{03} & = & 1 & h^{21} & h^{21} & 1 \\ h^{13} & h^{22} & h^{31} & 0 & h^{11} & 0 \\ h^{23} & h^{32} & 0 & 0 \\ h^{33} & 1 \end{array}$$

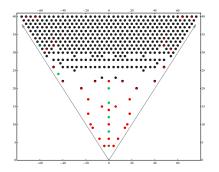
• Thus the Euler number is $\chi = 2(h^{11} - h^{21})$.

・ロト ・同ト ・ヨト ・ヨト

Motivation The Plan of Attack

Triadophilia I

In a recent paper¹, it was observed that the bottom of the Calabi-Yau 'landscape' is relatively sparsely populated.



 $\bullet\,$ The Kreuzer–Skarke list, CICY's, toric CICY's, and toric conifolds, with their mirrors.

• The Gross–Popescu, Rødlandand, Tonoli , Borisov-Hua and Hua manifolds.

• Previously known quotients by freely acting groups and their mirrors.

3

Divided dots denote overlays.

¹Candelas et al, *Triadophilia: A Special Corner in the Landscape*, **Adv.Theor.Math.Phys.12:2,2008**, arXiv:0706.3134 (D) (D) (D) (D)

Motivation The Plan of Attack

Triadophilia II

A number of other observations were made in the paper:

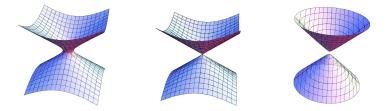
- There are at least two phenomenologically promising string models on manifolds in the 'tip', despite the scarcity of such manifolds.
- Almost all the manifolds known with small Hodge numbers have non-trivial fundamental group.

- 同 ト - ヨ ト - - ヨ ト

Motivation The Plan of Attack

Conifold transitions

• A smooth manifold can be deformed until nodes develop, and these nodes resolved to yield another manifold with the same fundamental group. This is called a "conifold transition".

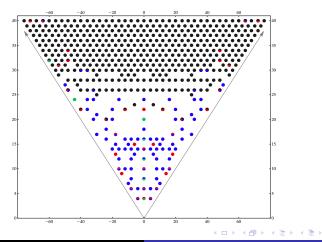


Motivation The Plan of Attack

- Therefore perhaps we can find new manifolds in the tip via conifold transitions from those which are already known.
- This corresponds to finding a conifold of the covering space which respects the symmetry.

・ 戸 ト ・ ヨ ト ・ ヨ

We can plot the distribution of Hodge numbers in the tip including the new manifolds we have found



Rhys Davies New Calabi-Yau manifolds with small Hodge numbers

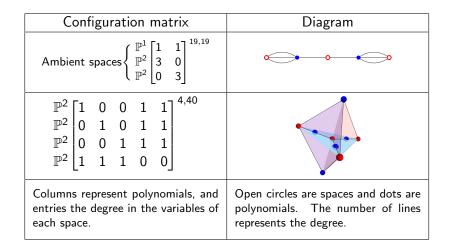
CICY's Quotients of CICY's Conifold transitions

- There are many constructions of Calabi-Yau manifolds; we need only the simplest, the Complete Intersection Calabi-Yau manifolds (CICY's).
- These are the common vanishing locus of some set of polynomials in a product of complex projective spaces.

・ロト ・同ト ・ヨト ・ヨト

CICY's Quotients of CICY's Conifold transitions

Configurations and diagrams Two examples

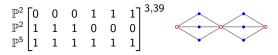


・ロト ・同ト ・ヨト ・ヨト

CICY's Quotients of CICY's Conifold transitions

Quotient manifolds An example

• Consider the configuration



Take coordinates u_i on the first P², v_i on the second, and (x_i, y_j) on P⁵. Then we can define an action of Z₃:

$$S: u_i \rightarrow u_{i+1}, v_i \rightarrow v_{i+1}, (x_i, y_j) \rightarrow (x_{i+1}, y_{j+1})$$

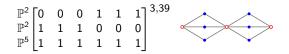
• We want our manifold invariant, so choose our polynomials such that

$$S: p_i \rightarrow p_{i+1}, q_i \rightarrow q_{i+1}$$

- 4 回 ト 4 ヨト 4 ヨト

CICY's Quotients of CICY's Conifold transitions

Quotient manifolds An example



• The appropriate polynomials are (here $i \in \mathbb{Z}_3$)

$$p_i = \sum_{jk} (A_{jk} x_{i+j} + B_{jk} y_{i+j}) u_{i+k}$$

 $q_i = \sum_{jk} (C_{jk} x_{i+j} + D_{jk} y_{i+j}) v_{i+k}$

 The group acts without fixed points, so we obtain a smooth quotient manifold.

(日) (同) (三) (三)

CICY's Quotients of CICY's Conifold transitions

The conifold

• Consider the CICY given by the configuration

and take coordinates $\{x\}$ on the first \mathbb{P}^2 and $\{y\}$ on the second.

 $\mathbb{P}^2 \begin{bmatrix} 3 \\ \mathbb{P}^2 \end{bmatrix}$

• We will look at a degenerate form of the defining equation:

$$U(x)V(y) - W(x)Z(y) = 0$$

where U, V, W, Z are cubics. The variety obviously has (nodal) singularities at points where U = V = W = Z = 0.

• Such singular varieties are known to physicists as "conifolds", since the neighbourhood of a node is a cone over $S^3 \times S^2$.

CICY's Quotients of CICY's Conifold transitions

• The conifold can be smoothed by a small change to the defining equation:

$$U(x)V(y) - W(x)Z(y) + \epsilon K(x,y) = 0$$

This is called a *deformation*.

• The conifold should be thought of as a limit point (as $\epsilon \rightarrow 0$) of the moduli space of smooth manifolds.

CICY's Quotients of CICY's Conifold transitions

The conifold Resolving

• Now consider the pair of equations given by

$$\begin{pmatrix} U(x) & Z(y) \\ W(x) & V(y) \end{pmatrix} \begin{pmatrix} t_0 \\ t_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} \mathbb{P}^1 \\ \text{or } \mathbb{P}^2 \\ \mathbb{P}^2 \begin{bmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 3 \end{bmatrix} \end{pmatrix}$$

- These have solutions iff UV WZ = 0, which is our singular equation again. Now though, when U = V = W = Z = 0, we have a whole \mathbb{P}^1 of solutions parametrised by $[t_0 : t_1]$.
- The resulting variety, which is smooth, is called a *resolution* of the conifold.

・ロト ・同ト ・ヨト ・ヨト

-

CICY's Quotients of CICY's Conifold transitions

Conifold transitions

Geometry			
Equation	$U(x)V(y) - W(x)Z(y)$ $+ \epsilon K(x, y) = 0$	U(x)V(y) - W(x)Z(y) = 0	$ \begin{pmatrix} U(x) & Z(y) \\ W(x) & V(y) \end{pmatrix} \begin{pmatrix} t_0 \\ t_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $
Family	$\mathbb{P}^2 \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ Smooth	$\mathbb{P}^{2} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ Singular	$ \begin{array}{c} \mathbb{P}^1 \begin{bmatrix} 1 & 1 \\ \mathbb{P}^2 & 3 & 0 \\ \mathbb{P}^2 & 0 & 3 \end{bmatrix} \text{ Smooth } $

<ロ> <同> <同> < 同> < 同>

CICY's Quotients of CICY's Conifold transitions

Splitting a configuration

 More generally we can introduce a Pⁿ to split a polynomial of total degree at least n + 1:

$$\mathcal{P}[M,\mathbf{c}] \rightarrow \frac{\mathbb{P}^n}{\mathcal{P}} \begin{bmatrix} \mathbf{0} & 1 & 1 & \cdots & 1 \\ M & \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_{n+1} \end{bmatrix}$$

where
$$\sum_{i} \mathbf{c}_{i} = \mathbf{c}$$
.

• For example,

$$\mathbb{P}^2_{\mathbb{P}^5} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 3 \end{bmatrix} \to \mathbb{P}^2_{\mathbb{P}^5} \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

CICY's Quotients of CICY's Conifold transitions

Conifold transitions in string theory

- Geometrically, a conifold is singular, but in string theory, the physics is still sensible.
- So it is possible for spacetime to undergo a conifold transition!
- Seemingly distinct string vacua are therefore actually connected.

- 4 回 ト 4 ヨト 4 ヨト

 $\begin{array}{l} \mathbb{Z}_5 \mbox{ quotients} \\ \mathbb{Z}_3 \mbox{ quotients} \\ \mbox{ Quotients by } \mathbb{H} \\ \mbox{ Notable points} \end{array}$

A quotient of the quintic

It has been known for a long time that the quintic $\mathbb{P}^4[5]$ admits a free action by \mathbb{Z}_5 . Let's see how this works:

• Take the following special case of the defining equation

$$(x_0)^5 + (x_1)^5 + (x_2)^5 + (x_3)^5 + (x_4)^5 + \alpha x_0 x_1 x_2 x_3 x_4 = 0$$

• There is a free \mathbb{Z}_5 action given by $x_i \to x_{i+1}$.

・ 戸 ト ・ ヨ ト ・ ヨ

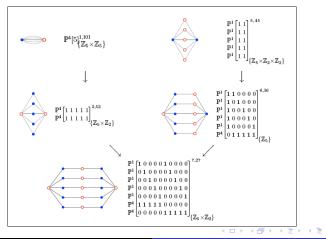
Overview Z5 quotients Technical Background Z3 quotients Results Quotients by H Summary Notable points

Splitting the quintic

We want to split the quintic in a way which might preserve this \mathbb{Z}_5 symmetry. There is a natural candidate:

The \mathbb{Z}_5 web

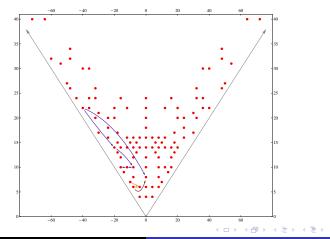
Continuing in a similar fashion, we obtain the following "web" of \mathbb{Z}_5 quotients



Rhys Davies New Calabi-Yau manifolds with small Hodge numbers

The \mathbb{Z}_5 web

We can also plot the conifold transitions on the Hodge numbers diagram



Rhys Davies New Calabi-Yau manifolds with small Hodge numbers

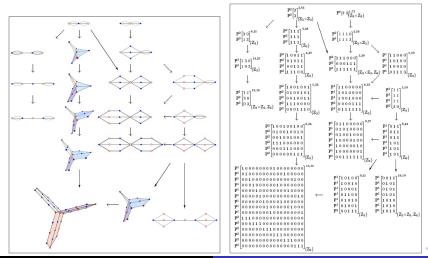
The following two manifolds each admit a free $\mathbb{Z}_3 \times \mathbb{Z}_3$ action.

We can split each of these repeatedly to obtain the following web of manifolds admitting free \mathbb{Z}_3 actions.

- 4 同 2 4 日 2 4 日 2

Overview Z₅ quotients Technical Background Z₃ quotients Results Quotients by Summary Notable poin

The \mathbb{Z}_3 web

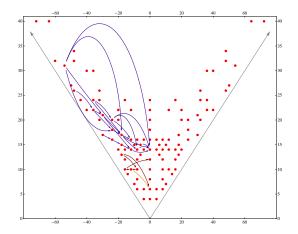


Rhys Davies

New Calabi-Yau manifolds with small Hodge numbers

Overview Z₅ quotients Technical Background Z₃ quotients Results Quotients by H Summary Notable points

The \mathbb{Z}_3 web



<ロ> (日) (日) (日) (日) (日)

æ

 Overview
 Z₅ quotients

 Technical Background
 ℤ₃ quotients

 Results
 Quotients by ℍ

 Summary
 Notable points

The quaternion group

• Finally we found free actions by the order 8 quaternion group:

$$\{1, i, j, k, -1, -i, -j, -k\}$$

 $\bullet\,$ The starting point is the following, already known to admit an $\mathbb H$ action

$$\mathbb{P}^{7}[2 \ 2 \ 2 \ 2]^{1,65}$$

▲□ ► < □ ► </p>

 Overview
 Z5 quotients

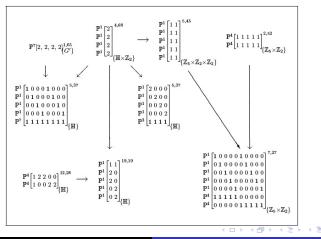
 Technical Background
 Z3 quotients

 Results
 Quotients by H

 Summary
 Notable points

The $\mathbb H$ web

By splitting the above manifold we obtain a number of new examples:



Rhys Davies New Calabi-Yau manifolds with small Hodge numbers

Overview Z₅ quotients Technical Background Z₃ quotients Results Quotients by H Summary Notable points

Matrix transposition

- For each matrix appearing in one of our webs, the transpose also appears.
- This is puzzling:
 - Transposition has no obvious geometrical meaning.
 - Even if two matrices give the same manifold, their transposes can give different manifolds.

- 4 同 🕨 - 4 目 🕨 - 4 目

 Overview
 Z5 quotients

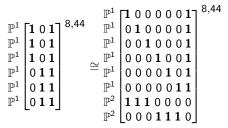
 Technical Background
 Z3 quotients

 Results
 Quotients by II

 Summary
 Notable points

Matrix transposition

Example: the following are equivalent



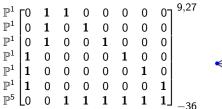
but the transposes have different Hodge numbers

$$\mathbb{P}^{2}_{p} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ \mathbb{P}^{2}_{p} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1}_{p} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0$$

 \mathbb{Z}_5 quotients \mathbb{Z}_3 quotients Quotients by \mathbb{H} Notable points

A new $\chi = -6$ manifold

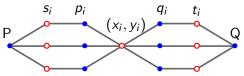
The following occurs in the \mathbb{Z}_3 web:





3

Label coordinates and polynomials as follows (with $i \in \mathbb{Z}_3$)



We can then define a $\mathbb{Z}_3{\times}\mathbb{Z}_2$ action with generators

- - ◆ 同 ▶ - ◆ 目 ▶

ъ

 \mathbb{Z}_5 quotients \mathbb{Z}_3 quotients Quotients by \mathbb{H} Notable points

A new $\chi = -6$ manifold

• *S* acts without fixed points, but the fixed points of *U* correspond to two copies of

\mathbb{P}^1	[1	1	0	0]
\mathbb{P}^{1} \mathbb{P}^{1} \mathbb{P}^{2}	1	0	1	0
\mathbb{P}^1	1	0	0	1
\mathbb{P}^2	0	1	1	1

- These are one-dimensional CICY's i.e. tori.
- Thus they have Euler number 0, and we can resolved them without changing the Euler number.

 $\begin{array}{l} \mathbb{Z}_5 \mbox{ quotients} \\ \mathbb{Z}_3 \mbox{ quotients} \\ \mbox{ Quotients by } \mathbb{H} \\ \mbox{ Notable points} \end{array}$

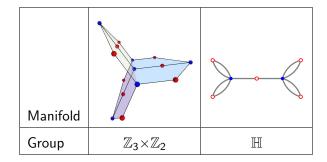
Euler number 0 manifolds

• The U.Penn. group has constructed a promising heterotic string model on the following manifold

$$\begin{pmatrix} \mathbb{P}^1 \begin{bmatrix} 1 & 1 \\ \mathbb{P}^2 \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}_{/\mathbb{Z}_3 \times \mathbb{Z}_3} \end{pmatrix}^{3,3}$$

• We now have two more manifolds with Hodge numbers 3, 3.

- 4 同 2 4 日 2 4 日 2



These quotient manifolds both have Hodge numbers $(h^{11}, h^{21}) = (3, 3)$.

→ 3 → < 3</p>

- We have found a number of new multiply-connected manifolds with small Hodge numbers.
- At least two of these manifolds resemble existing manifolds on which promising string models have been contructed.
- Scope for new model building, or general study of multiply-connected manifolds in string theory.

/□ ▶ < 글 ▶ < 글